A Study on Family Life Cycle and Housing Consumption

장희수 (Chung, Hee Soo)** · 권혁일 (Kwon, Hyuk IL)***

< Abstract >

This paper is designed to study the impact of family life cycle (FLC) on household's housing consumption. Family life cycle is represented by household head's age and income, while housing consumption includes floor areas, the number of rooms, the price of dwelling occupied by the household, monthly mortgage debt service ratio (DSR) and the probability of home ownership. In the model, the independent variables explaining housing consumption are, in addition to household head's age and income, household head's profession, education, tenure and region where he or she lives. The models for floor areas, the number of rooms, dwelling price and DSR are estimated by the ordinary least squares regression technique, whereas the model for the probability of home ownership is analyzed through the logit model. Data used are the results of survey on the demand for mortgage loans conducted by Kookmin Bank in 2001 covering more than 2000 households in major cities.

The findings may be summarized as follows. First, floor areas, the number of rooms and the dwelling price increase steadily with household head's age and income but as decreasing rate. Second, the DSR decreases with household head's age and income up to the age of 50 years and then increases again. Third, the probability of home ownership also increases with household head's age and income but at decreasing rate. Fourth, such independent variables as household head's profession, education and region of residence exert some degree of impact on housing consumption but their...
Impact is very limited. Fifth, as the household goes through changes from the stage of household formation, the stage of expansion to the stage of stability, the difference between the actual level of housing consumption and desired level of consumptions narrows down implying that in Korea, one tends to attain the desired level of housing consumption during the course of the family life cycle. If there is any difference between FLC related housing consumption pattern (floor areas and number of rooms) in advanced countries and Korea, it is the fact that Korean household continues to increase the level of their housing consumption during their entire FLC, while, in advanced countries, the level of household’s housing consumption falls as household’s size decreases. The findings of this paper can be quite useful not only for the government’s housing policy but also for house builder’s construction planning and the bank’s housing loans strategies.

키워드 : 가족생애주기, 주택소비, 주택구입확률

Keywords : Family Life Cycle, Housing Consumption, Probability of Housing Purchase

I. 서론

주택부족난이 해소됨에 따라 앞으로의 주택시장은 공급자 위주의 시장에서 수요자 위주의 시장으로 전환될 것으로 전망된다. 수요자 위주의 시장이란 주택소비형태가 소비자 취향에 따라 개별화되고 다양화됨을 의미한다. 선행연구에 따르면 주택소비형태에 가장 유의한 영향을 미치는 변수는 바로 가족생애주기(Family Life Cycle: FLC)라 할 수 있다. 왜냐하면 가족생애주기에 따라 가족의 주택소요(Needs)가 다르게 나타나기 때문이다. 가족의 형성단계, 확대단계 그리고 축소단계에 따라 주택의 규모, 시설, 점유형태에 대한 선호도가 다르게 나타나며 이러한 요소를 구입하기 위하여 융자를 필요로 하는 수요자도 다양하게 분포한다.

따라서 본 연구의 목적은 우리나라의 주택소비형태가 가족생애주기에 따라 어떻게 변하는지를 분석하는데 있다. 본 연구는 주택정책의 수립 및 주택건설업자의 생산계획
수립 그리고 금융기관의 용자전략에도 매우 중요한 것이라고 할 수 있다. 외국과 비교할 때 우리나라의 가족생애주기와 근로소비에 관한 연구가 매우 부족한 상황이며 향후 주택정책의 성공여부는 정책당국이 가족생애주기에 따른 주택소비의 다양성을 어느 정도 감안하느냐에 따라 결정될 것이다. 또한 생애주기에 따른 다양한 주택소비형태를 반영하지 않은 주택건설계획 혹은 금융기관의 용자전략은 성공하기 어려워질 것이다. 본 논문은 총 5개의 장으로 구성된다. 제1장에서 본 연구의 배경 및 목적에 대하여 언급하고, 제2장에서는 기존 문헌을 감안하여 본 연구의 분석틀을 제시하며 제3장에서는 추정모형을 설정한다. 다음으로 제4장에서는 생애주기와 주택소비간의 관계를 추정한다. 제4장은 크게 가족생애주기와 주택규모에 미치는 영향, 소비자의 주거서비스구입을 위한 은행융자계획에 미치는 영향 그리고 소비자의 주택정책유형제선택에 미치는 영향 등으로 구분할 수 있다. 마지막으로 제5장에서는 분석결과를 요약하고 정책적 시사점을 제시하고자 한다.

II. 이론적 배경

집 떠난 후, 완전수축기(부부 중 한명 사망) 그리고 해체기(나머지 배우자 사망)단계로 나누었다.

까지는 증가하다가 60대부터 감소하는 한편 가족자산은 60대 이후도 증가한다고 한다.
는데 여기에서는 가족생애주기와 주택규모에 중요한 영향을 미친다고 주장하고
따라 자가율이 변화한다고 한다. 한편 Wadell(1992), Doling(1976), Gober(1992) 등은 가구
소득이, Deurlo et al.(1989)은 소득과 가구주의 연령이 동시에 주택구입에 유의한 영향
을 미친다고 주장한다. 또 한편 정의철(2002), 오정일(2001), Bourassa(1995), Kim, Song
Jae(1992), Lim et al.(1980) 등은 가족생애주기나 소득뿐만 아니라 다양한 변수가 주택점
유형대(tenure)에 미치는 영향을 검토한바 있다.
김경환(1999)은 1인당 주거면적 및 메베가격과 가구주의 연령간의 관계를 분석한바
있다. 대우경제연구소의 1993년도 자료(2192가구)와 국토연구원의 1986년도 자료(723가
구)를 회귀분석한 결과를 보면 가구주 연령과 메베가격 및 1인당 주거면적간의 관계는
유의하고 비선형적으로 나타났다.

III. 추정모형의 설정

기존 선행연구의 분석결과를 토대로 다음의 추정모형을 제택한다. 종속변수는 다음의
3개 군으로 구분한다. 즉 1)주택규모(전용면적, 방수), 주택가격 및 가구년소득대비 주택
가격비율, 2)융자계획(융자액 대출기간, LTV 유효환부담), 3)주택구입결정 등이다. 핵심
적 독립변수는 가구주의 연령 및 소득이지만 이들 변수들의 순서급효과를 추정하기 위
해 가구주의 학력, 직업, 지역, 점유형태도 독립변수로 포함시켰으며 이들 변수들은 더
비(dummy)변수로 계량화하였다. 학력의 경우 대졸이상이 1.0, 직업의 경우 자영업자가
1.0, 지역의 경우 수도권이 1.0, 점유형태의 경우 자가가구를 1.0으로 정한다.
본 연구의 분석에 이용된 통계자료는 2001년도 국민은행의 주택금융수요실태조사자
료이다. 표본규모는 2,072가구(융자대상가구: 842, 비융자대상가구: 1,230가구)이고 조사
대상은 가구주 및 배우자이며 조사대상지역은 서울(강남, 강북, 6개 광역도시, 5개 신도
시 및 6개 지방도시).
IV. 가족생애주기와 주택소비

1. 주택규모 및 주택가격

표 1에서 가구주의 연령, 소득 및 기타 변수가 주택규모와 주택가격에 미치는 영향을 회귀모형을 통하여 분석하였다. 주택규모는 현재 및 희망전용면적, 현재 및 미래의 방수로 구분하고 주택가격도 현재 및 희망가격으로 구분했다. 희망전용면적, 방수 및 가격을 분석하는 이유는 소비자의 현재 소비형태와 미래 소비형태를 비교분석함으로서 주택소비의 변화를 볼 수 있기 때문이다. 독립변수 중 가구주 연령과 소득은 2차방정식으로 투입되었는데 그 이유는 기존 연구자료에서 주택소비와 이들 변수간의 관계는 비선형적이라는 것이 제시되어 있기 때문이다. 다른 방법으로 비선형적 관계를 표시할 수 있으나 2차식이 가장 해석하기 쉬운 방법이기 때문에 선택했다.

분석 결과를 다음과 같이 요약할 수 있다. 첫째, 결정계수는 6.8%~22.0%수준으로 비교적 낮은 수준인데 그 이유는 추세변동이 빠진 횡단자료(Cross-Sectional Data)이기 때문이다. 그러나 모형의 푸값을 볼 때 모든 6개 모형의 신뢰도가 매우 높다는 것을 알 수 있다. 둘째, 희망주택규모와 희망가격에 관한 모형의 R^2가 비교적 낮은 수준이라고 할 수 있다. 희망하는 수치이기 때문에 명시된 독립변수의 과급효과가 약하거나 혹은 모형에서 편입시키지 않은 다른 독립변수가 있다는 것을 알 수 있다.셋째, 임차가구와 비교할 때 자가가구는 더 크고 더 비싸고 질이 좋은 집을 가지고 있거나 희망한다는 것을 알 수 있다.넷째, 수도권의 가구가 타지역과 비교할 때 방수와 작은 집을 가지고 있는 반면 현재 혹은 희망주택가격이 더 비싸다는 것을 알 수 있다. 직업의 영향을 보면 희망전용면적의 경우 자영업자가 기타 직업자보다 더 큰집을 희망하는 것 같다. 다섯째, t값을 볼 때 주택규모 및 가격에 가장 확실한 비선형적 영향을 미치는 변수는 가구주 연령과 소득이다. 가구주 연령의 경우, 현재 주택가격을 제외하면 모든 모형에서 매우 유의한 관계를 보이며 주택규모 및 주택가격은 일정수준의 가구주 연령까지는 증가하다가 다시 감소 혹은 증가율이 완화하는 관계를 가지고 있으며 이는 기존의 연구자료와 일치한다. 또한 소득은 주택규모 및 주택가격에 확고한 영향을 미치며 일정 수준의 소득에서는 주택규모 및 가격이 증가하다가 다시 감소 혹은 증가율이 완화하는 관계를 보인다. 이 결과도 기존의 연구자료와 동일하다.
<표 1> 가족생애주기와 주택규모 및 주택가격에 대한 회귀분석

<table>
<thead>
<tr>
<th>종속변수</th>
<th>독립변수의 회귀계수 (T Value)</th>
<th>F (유의도)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>전용면적 (현재)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.607 (1.423)</td>
<td>0.394 (3.456)</td>
</tr>
<tr>
<td>전용면적 (희망)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.713 (1.996)</td>
<td>0.692 (2.854)</td>
</tr>
<tr>
<td>사용량의 갯수(현재)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.957 (3.491)</td>
<td>6.783E-02 (5.491)</td>
</tr>
<tr>
<td>사용량의 갯수(희망)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.190 (2.355)</td>
<td>3.427E-02 (3.567)</td>
</tr>
<tr>
<td>주택가격 (현재)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-14047.090 (1.823)</td>
<td>30.153 (3.875)</td>
</tr>
<tr>
<td>주택가격 (희망)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-7313.153 (2.526)</td>
<td>52.733 (4.042)</td>
</tr>
</tbody>
</table>

<표 1>의 회귀분석 결과를 토대로 일련의 시뮬레이션을 실시하여 주택소비가 가구소득과 가구주의 연령에 따라 어떻게 변화하는지 살펴보았다. 시뮬레이션의 결과는 <표 2>에서 정리하였다. 시뮬레이션은 dummy 변수의 회귀계수를 상수에 통합한 후 실시하였다.

<표 2>에 의하면 전용면적은 연령과 소득이 높은수록 현재전용면적 및 희망전용면적이 커진다. 40세 가구주의 경우, 가구소득이 월 100만원에서 500만원으로 증가할 때 전 용면적의 현재전용면적은 24.5평에서 31.5평으로, 희망전용면적은 40.7평에서 47.1평으로 증가한다. 한편 월소득이 250만원일 경우, 가구주 연령이 25세에서 50세로 증가할 때 현재전용면적은 23.9평에서 28.9평으로 증가하였고, 희망전용면적은 39.4평에서 44.1평으로 증가하는 것으로 나타났다. 그러나 가구주의 연령이 60세로 증가하면 전용면적은 희망 전용면적에 약간 감소한다. 주택규모와 가구주 연령 및 소득간의 비선형적 관계는 소득 및 가구주 연령에 따른 주택규모증가율이 가구주 연령과 소득이 컷될수록 둔화되는데서 나타난다. 예컨대 소득이 150만원일 경우, 가구주 연령이 25세에서 35세로 증가할 때 전용면적은 10.9%(현재전용면적), 10.7%(희망전용면적) 증가하는데 가구주 연령이 50세에서 60세로 증가할 때 전용면적은 현재 전용면적의 경우 4.1% 증가, 희망전용면적의 경
우 0.2% 감소한다. 한편 가구 주 연령이 40세일 경우, 소득이 100만원에서 200만원으로 증가하면 현재전용면적은 7.8%, 화망전용면적은 4.2% 증가하지만 소득이 400만원에서 500만원으로 증가하며 현재전용면적은 5.4%, 화망전용면적은 3.3% 증가한다.

표 2. 전용면적에 대한 시뮬레이션

(단위: 평)

<table>
<thead>
<tr>
<th>구분</th>
<th>연령</th>
<th>25세 미만</th>
<th>30세</th>
<th>35세</th>
<th>40세</th>
<th>50세</th>
<th>60세 이상</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>현재</td>
<td>21.1</td>
<td>22.3</td>
<td>23.4</td>
<td>24.5</td>
<td>26.1</td>
<td>27.2</td>
</tr>
<tr>
<td></td>
<td>화망</td>
<td>36.8</td>
<td>38.4</td>
<td>39.7</td>
<td>40.7</td>
<td>41.5</td>
<td>41.1</td>
</tr>
<tr>
<td>100만원</td>
<td>현재</td>
<td>22.0</td>
<td>23.3</td>
<td>24.4</td>
<td>25.4</td>
<td>27.0</td>
<td>28.1</td>
</tr>
<tr>
<td></td>
<td>화망</td>
<td>37.7</td>
<td>39.3</td>
<td>40.6</td>
<td>41.5</td>
<td>42.4</td>
<td>41.9</td>
</tr>
<tr>
<td>150만원</td>
<td>현재</td>
<td>23.0</td>
<td>24.2</td>
<td>25.4</td>
<td>26.4</td>
<td>28.0</td>
<td>29.1</td>
</tr>
<tr>
<td></td>
<td>화망</td>
<td>38.5</td>
<td>40.2</td>
<td>41.4</td>
<td>42.4</td>
<td>43.2</td>
<td>42.8</td>
</tr>
<tr>
<td>200만원</td>
<td>현재</td>
<td>23.9</td>
<td>25.1</td>
<td>26.3</td>
<td>27.3</td>
<td>28.9</td>
<td>30.0</td>
</tr>
<tr>
<td></td>
<td>화망</td>
<td>39.4</td>
<td>41.0</td>
<td>42.3</td>
<td>43.2</td>
<td>44.1</td>
<td>43.6</td>
</tr>
<tr>
<td>250만원</td>
<td>현재</td>
<td>24.8</td>
<td>26.0</td>
<td>27.2</td>
<td>28.2</td>
<td>29.8</td>
<td>30.9</td>
</tr>
<tr>
<td></td>
<td>화망</td>
<td>40.2</td>
<td>41.8</td>
<td>43.1</td>
<td>44.0</td>
<td>44.9</td>
<td>44.4</td>
</tr>
<tr>
<td>300만원</td>
<td>현재</td>
<td>26.5</td>
<td>27.7</td>
<td>28.9</td>
<td>29.9</td>
<td>31.5</td>
<td>32.6</td>
</tr>
<tr>
<td></td>
<td>화망</td>
<td>41.8</td>
<td>43.4</td>
<td>44.7</td>
<td>45.6</td>
<td>46.5</td>
<td>46.0</td>
</tr>
<tr>
<td>400만원</td>
<td>현재</td>
<td>28.1</td>
<td>29.4</td>
<td>30.5</td>
<td>31.5</td>
<td>33.1</td>
<td>34.2</td>
</tr>
<tr>
<td></td>
<td>화망</td>
<td>43.3</td>
<td>44.9</td>
<td>46.2</td>
<td>47.1</td>
<td>48.0</td>
<td>47.5</td>
</tr>
</tbody>
</table>

표 3. 현재전용면적대비 화망전용면적비율에 대한 시뮬레이션

<table>
<thead>
<tr>
<th>구분</th>
<th>연령</th>
<th>25세 미만</th>
<th>30세</th>
<th>35세</th>
<th>40세</th>
<th>50세</th>
<th>60세 이상</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>현재</td>
<td>1.73</td>
<td>1.72</td>
<td>1.69</td>
<td>1.66</td>
<td>1.58</td>
<td>1.51</td>
</tr>
<tr>
<td></td>
<td>화망</td>
<td>1.71</td>
<td>1.68</td>
<td>1.66</td>
<td>1.63</td>
<td>1.57</td>
<td>1.49</td>
</tr>
<tr>
<td>100만원</td>
<td>현재</td>
<td>1.67</td>
<td>1.66</td>
<td>1.63</td>
<td>1.60</td>
<td>1.54</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td>화망</td>
<td>1.64</td>
<td>1.63</td>
<td>1.60</td>
<td>1.58</td>
<td>1.52</td>
<td>1.45</td>
</tr>
<tr>
<td>150만원</td>
<td>현재</td>
<td>1.62</td>
<td>1.60</td>
<td>1.58</td>
<td>1.56</td>
<td>1.50</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>화망</td>
<td>1.57</td>
<td>1.56</td>
<td>1.54</td>
<td>1.52</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>200만원</td>
<td>현재</td>
<td>1.54</td>
<td>1.52</td>
<td>1.51</td>
<td>1.49</td>
<td>1.45</td>
<td>1.39</td>
</tr>
</tbody>
</table>

<표 3>에서 현재전용면적대비 화망전용면적비율을 살펴보았다. 이 비율은 화망하는 전용면적이 현재전용면적보다 어느 정도 큰지를 보여준다. 비율이 클수록 갇차가 큰 것
이러 비율이 작을수록 격차가 작아진다. 시뮬레이션 결과에 따르면 소득이 높음수록 가구주의 연령이 높음수록 비율이 작아진다. 예컨대 소득이 150만원, 가구주 연령이 35세 일 경우 비율이 1.18인데 가구주 연령이 50세이고 소득이 500만원일 경우 전용면적비율이 1.03으로 떨어진다. 즉, 일정소득수준 조건에서 가구주의 연령이 클수록 희망하는 전용면적은 확보할 수 있다는 것이다.

<표 4>에서 가구주의 연령별·소득별 방수에 관한 시뮬레이션을 시행했다. 본 표에 따르면 가구주의 연령이 40세일 경우, 소득이 150만원에서 500만원으로 증가할 때 현재 방수는 3.58개에서 4.13개로, 희망방수는 4.03개에서 4.43개로 증가한다. 한편 가구소득이 250만원이고, 가구주의 연령이 25세에서 60세로 증가할 때 현재방수는 3.33개에서 4.03개로 증가하는 것으로 나타났다. 방수와 가구주 연령 및 소득간의 관계는 비선형적이며 이러한 관계는 가구주 연령 및 소득이 증가할 때 방수의 증가율이 증가한다는 데서 나타난다. 예컨대 소득이 150만원일 경우, 가구주 연령이 25세에서 35세로 증가할 때 방수는 10.7%(현재방수), 3.1%(희망방수) 증가하지만 가구주 연령이 50세에서 60세로 증가할 때 방수는 1.6%(현재방수) 증가하는데 희망방수는 1.2% 감소한다. 한편 가구주 연

<table>
<thead>
<tr>
<th>구분</th>
<th>연령</th>
<th>25세</th>
<th>30세</th>
<th>35세</th>
<th>40세</th>
<th>50세</th>
<th>60세</th>
</tr>
</thead>
<tbody>
<tr>
<td>100만원</td>
<td>현재</td>
<td>3.11</td>
<td>3.30</td>
<td>3.45</td>
<td>3.58</td>
<td>3.75</td>
<td>3.81</td>
</tr>
<tr>
<td></td>
<td>희망</td>
<td>3.87</td>
<td>3.94</td>
<td>3.99</td>
<td>4.03</td>
<td>4.03</td>
<td>3.97</td>
</tr>
<tr>
<td>150만원</td>
<td>현재</td>
<td>3.19</td>
<td>3.37</td>
<td>3.53</td>
<td>3.66</td>
<td>3.83</td>
<td>3.89</td>
</tr>
<tr>
<td></td>
<td>희망</td>
<td>3.93</td>
<td>4.00</td>
<td>4.05</td>
<td>4.08</td>
<td>4.09</td>
<td>4.02</td>
</tr>
<tr>
<td>200만원</td>
<td>현재</td>
<td>3.26</td>
<td>3.44</td>
<td>3.60</td>
<td>3.73</td>
<td>3.90</td>
<td>3.96</td>
</tr>
<tr>
<td></td>
<td>희망</td>
<td>3.98</td>
<td>4.05</td>
<td>4.10</td>
<td>4.13</td>
<td>4.14</td>
<td>4.08</td>
</tr>
<tr>
<td>250만원</td>
<td>현재</td>
<td>3.33</td>
<td>3.52</td>
<td>3.67</td>
<td>3.80</td>
<td>3.97</td>
<td>4.03</td>
</tr>
<tr>
<td></td>
<td>희망</td>
<td>4.03</td>
<td>4.10</td>
<td>4.15</td>
<td>4.19</td>
<td>4.20</td>
<td>4.13</td>
</tr>
<tr>
<td>300만원</td>
<td>현재</td>
<td>3.40</td>
<td>3.58</td>
<td>3.74</td>
<td>3.87</td>
<td>4.04</td>
<td>4.10</td>
</tr>
<tr>
<td></td>
<td>희망</td>
<td>4.09</td>
<td>4.15</td>
<td>4.21</td>
<td>4.24</td>
<td>4.25</td>
<td>4.18</td>
</tr>
<tr>
<td>400만원</td>
<td>현재</td>
<td>3.53</td>
<td>3.72</td>
<td>3.87</td>
<td>4.00</td>
<td>4.17</td>
<td>4.23</td>
</tr>
<tr>
<td></td>
<td>희망</td>
<td>4.18</td>
<td>4.25</td>
<td>4.30</td>
<td>4.34</td>
<td>4.34</td>
<td>4.28</td>
</tr>
<tr>
<td>500만원</td>
<td>현재</td>
<td>3.66</td>
<td>3.84</td>
<td>4.00</td>
<td>4.13</td>
<td>4.30</td>
<td>4.36</td>
</tr>
<tr>
<td></td>
<td>희망</td>
<td>4.28</td>
<td>4.35</td>
<td>4.40</td>
<td>4.43</td>
<td>4.44</td>
<td>4.37</td>
</tr>
</tbody>
</table>
령이 40세일 경우, 소득이 100만원에서 200만원으로 증가할 때 사용방수는 4.2%(현재방수), 2.5%(희망방수) 증가하지만 소득이 400만원에서 500만원으로 증가할 때 방수는 3.3%(현재방수), 2.1%(희망방수) 증가한다.

<표 5>에서는 현재방수대비 희망방수비율을 정리했다. 전용면적과 같이 가구주의 연령과 소득이 높음수록 방수비율이 하락한다. 소득이 150만원일 경우, 가구주 연령이 25세에서 60세로 증가할 때 방수비율은 1.23에서 1.03으로 하락한다. 한편 가구주 연령이 40세일 경우, 소득이 100만원에서 500만원으로 증가할 때 방수비율은 1.13에서 1.07로 떨어진다. 이러한 추세는 가구주 연령이 증가하고 소득이 증가함에 따라 희망하는 규모의 주택에서 거주할 수 있는 기회가 커진다는 것을 말한다.

<table>
<thead>
<tr>
<th>구분</th>
<th>연령</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25세미만</td>
</tr>
<tr>
<td>소득</td>
<td></td>
</tr>
<tr>
<td>100만원</td>
<td>1.24</td>
</tr>
<tr>
<td>150만원</td>
<td>1.23</td>
</tr>
<tr>
<td>200만원</td>
<td>1.22</td>
</tr>
<tr>
<td>250만원</td>
<td>1.21</td>
</tr>
<tr>
<td>300만원</td>
<td>1.20</td>
</tr>
<tr>
<td>400만원</td>
<td>1.18</td>
</tr>
<tr>
<td>500만원</td>
<td>1.17</td>
</tr>
</tbody>
</table>

<표 6>에서는 가구주의 연령별・소득별 주택가격에 대한 현재가격과 희망가격을 볼 수 있다. 가구주가 40세인 경우, 소득이 100만원에서 500만원으로 증가함에 따라 현재주택가격은 9,272만원에서 24,039만원으로 급증하고 희망주택가격은 20,628만원에서 28,328만원으로 증가한다. 한편 가구소득이 250만원인 경우, 가구주의 연령이 25세에서 60세로 증가함에 따라 현재주택가격은 약 10,000만원에서 22,873만원으로, 희망주택가격은 20,418만원에서 24,869만원으로 증가한다.

이와 같이 주택가격은 가구주 연령 및 소득과 정(+)의 관계를 보이며 이 관계는 비선형적 관계다. 소득이 150만원일 경우, 가구주 연령이 25세에서 35세로 증가할 때 가격은 55%(현재가격), 13.3%(희망가격) 증가하는 반면 50세에서 60세로 증가할 때 가격은 25.7%(현재가격), 0.3%(희망가격)밖에 상승하지 않는다. 한편 가구주 연령이 40세일 경
우, 소득이 100만원에서 200만원으로 증가할 때 가격은 43.9%(현재가격), 10.1%(희망가격) 증가하는데 소득이 400만원에서 500만원으로 증가할 때 가격은 16.0%(현재가격), 6.6%(희망가격) 증가한다.

<table>
<thead>
<tr>
<th>구분</th>
<th>연령</th>
<th>25세 미만</th>
<th>30세</th>
<th>35세</th>
<th>40세</th>
<th>50세</th>
<th>60세 이상</th>
</tr>
</thead>
<tbody>
<tr>
<td>100만원</td>
<td>현재</td>
<td>3,978</td>
<td>5,705</td>
<td>7,469</td>
<td>9,272</td>
<td>12,992</td>
<td>16,865</td>
</tr>
<tr>
<td></td>
<td>희망</td>
<td>17,328</td>
<td>18,564</td>
<td>19,765</td>
<td>20,628</td>
<td>21,646</td>
<td>21,719</td>
</tr>
<tr>
<td>150만원</td>
<td>현재</td>
<td>6,043</td>
<td>7,770</td>
<td>9,535</td>
<td>11,337</td>
<td>15,058</td>
<td>18,930</td>
</tr>
<tr>
<td></td>
<td>희망</td>
<td>18,385</td>
<td>19,722</td>
<td>20,822</td>
<td>21,685</td>
<td>22,703</td>
<td>22,776</td>
</tr>
<tr>
<td>200만원</td>
<td>현재</td>
<td>8,046</td>
<td>9,772</td>
<td>11,537</td>
<td>13,340</td>
<td>17,060</td>
<td>20,933</td>
</tr>
<tr>
<td></td>
<td>희망</td>
<td>19,415</td>
<td>20,752</td>
<td>21,852</td>
<td>22,175</td>
<td>23,733</td>
<td>23,806</td>
</tr>
<tr>
<td>250만원</td>
<td>현재</td>
<td>9,986</td>
<td>11,712</td>
<td>13,477</td>
<td>15,280</td>
<td>19,000</td>
<td>22,873</td>
</tr>
<tr>
<td></td>
<td>희망</td>
<td>20,418</td>
<td>21,755</td>
<td>22,855</td>
<td>23,718</td>
<td>24,737</td>
<td>24,809</td>
</tr>
<tr>
<td>300만원</td>
<td>현재</td>
<td>11,863</td>
<td>13,589</td>
<td>15,354</td>
<td>17,157</td>
<td>20,877</td>
<td>24,750</td>
</tr>
<tr>
<td></td>
<td>희망</td>
<td>21,394</td>
<td>22,731</td>
<td>23,831</td>
<td>24,694</td>
<td>25,712</td>
<td>25,785</td>
</tr>
<tr>
<td>400만원</td>
<td>현재</td>
<td>15,429</td>
<td>17,156</td>
<td>18,920</td>
<td>20,723</td>
<td>24,443</td>
<td>28,316</td>
</tr>
<tr>
<td></td>
<td>희망</td>
<td>23,266</td>
<td>24,601</td>
<td>25,702</td>
<td>26,566</td>
<td>27,583</td>
<td>27,656</td>
</tr>
<tr>
<td>500만원</td>
<td>현재</td>
<td>18,744</td>
<td>20,471</td>
<td>22,236</td>
<td>24,039</td>
<td>27,759</td>
<td>31,632</td>
</tr>
<tr>
<td></td>
<td>희망</td>
<td>25,028</td>
<td>26,364</td>
<td>27,464</td>
<td>28,328</td>
<td>29,346</td>
<td>29,419</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>구분</th>
<th>연령</th>
<th>25세미만</th>
<th>30세</th>
<th>35세</th>
<th>40세</th>
<th>50세</th>
<th>60세이상</th>
</tr>
</thead>
<tbody>
<tr>
<td>100만원</td>
<td>4.35</td>
<td>3.27</td>
<td>2.64</td>
<td>2.22</td>
<td>1.67</td>
<td>1.29</td>
<td></td>
</tr>
<tr>
<td>150만원</td>
<td>3.04</td>
<td>2.53</td>
<td>2.18</td>
<td>1.91</td>
<td>1.91</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>200만원</td>
<td>2.41</td>
<td>2.12</td>
<td>1.89</td>
<td>1.70</td>
<td>1.38</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>250만원</td>
<td>2.04</td>
<td>1.85</td>
<td>1.69</td>
<td>1.55</td>
<td>1.30</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>300만원</td>
<td>1.80</td>
<td>1.67</td>
<td>1.55</td>
<td>1.43</td>
<td>1.23</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>400만원</td>
<td>1.50</td>
<td>1.43</td>
<td>1.35</td>
<td>1.28</td>
<td>1.13</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>500만원</td>
<td>1.33</td>
<td>1.28</td>
<td>1.23</td>
<td>1.18</td>
<td>1.05</td>
<td>0.93</td>
<td></td>
</tr>
</tbody>
</table>
〈표 7〉에서 현재가격대비 최망가격비율을 검토했다. 소득이 150만원일 경우, 가격비율은 가구주 연령이 20세에서 60세로 늘어날 때 3.04에서 1.20으로 떨어지며 가구주 연령이 40세일 경우, 소득이 100만원에서 500만원으로 증가할 때 가격비율은 2.22에서 1.18로 급락한다. 홍미로운 것은 가구주가 60세 이상이고 소득이 500만원일 경우 가격비율이 0.93으로 떨어지는데 이것은 최망가격이 현재가격보다 7%저렴하다는 것이다.

최망주택규모/가격과 현재주택규모/가격간의 관계를 검토한 결과 우리나라 가구는 생애주기가 전진하고 소득이 증가함에 따라 최망하는 주택규모와 최망하는 가격의 주택을 살 수 있는 가능성이 점차적으로 커진다는 것을 뜻한다. 한편 주거비용은 가구년 소득대비 가격비율(price-income ratio: PIR)를 통해 볼 수 있다. 〈표 8〉에 따르면 R^2는 10%이며 낮은 수준이나 F값은 높은 유의도를 보장한다. 독립변수중에서 통계학적으로 유의한 변수는 소득 및 지역으로 나타났다. 소득과 PIR관계는 비선형적 관계를 가지고 있으며 낮소득이 일정수준이 될 때까지는 PIR이 감소하고 소득이 그 이상이 되면 다시 증가하는 경향을 보인다. 이러한 현상은 소득이 증가함에 따라 주택구입부담이 점차적으로 적어지다가 소득이 감소하거나 혹은 증가율이 변화되면 주택구입부담이 다시 커진다는 것을 의미한다. 지역변수도 유의한 변수로 등장한다. 수도권의 PIR은 기타지역보다 0.79 높게 나타나며 이것은 소득에 비해 수도권의 주택가격이 매우 높다는 것이다. 주목할 것은 가구주 연령이 PIR에 유의한 영향을 주지 않는다는 것인데 이는 주택구입부담은 가구주 연령보다 가구소득에 따라 결정된다는 것을 알 수 있다.

〈표 8〉 PIR에 대한 회귀분석

<table>
<thead>
<tr>
<th>변수</th>
<th>R^2</th>
<th>T</th>
<th>연령</th>
<th>연령2</th>
<th>소득</th>
<th>소득2</th>
<th>학력</th>
<th>직업</th>
<th>지역</th>
<th>F (유의도)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIR</td>
<td>0.100</td>
<td>5.178</td>
<td>-5.084E-02</td>
<td>1.048E-03</td>
<td>-8.315E-03</td>
<td>2.297E-06</td>
<td>0.415</td>
<td>-0.101</td>
<td>0.789</td>
<td>14.249 (0.000)</td>
</tr>
</tbody>
</table>
2. 주택금융 융자계획

주택금융 융자계획은 화장대출액, 화장대출기간 및 원상환부담가능액 등으로 계량화 하였다. 이들 3개 변수를 종속변수로 하고 독립 변수로는 가구주의 연령, 소득, 학력, 직업, 지역 및 점유형태를 포함했다. <표 9>에서와 같이 결정계수는 매우 낮은 수준이나 P값이 10%에 이르게 되면 모형의 전체적 유의도는 매우 높다고 보인다. 화장대출액을 보면 가구주 연령보다는 학력, 지역 및 점유형태, 특히 소득의 영향을 받는 듯하다. 대출이상자는 기 타 학력수준의 가구보다 1.396만원, 수도권 지역의 가구는 기타 지역가구보다 805만원, 자가가구는 임차가구보다 397만원 더 큰 액수의 융자를 원한다.

<표 9> 주택금융 융자계획에 대한 회귀분석

<table>
<thead>
<tr>
<th>종속변수</th>
<th>독립변수의 회귀계수 (T Value)</th>
<th>F (유의도)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>상수</td>
<td>연령</td>
</tr>
<tr>
<td>화장대출액</td>
<td>0.055</td>
<td>1904.426 (1.526)</td>
</tr>
<tr>
<td>화장대출기간</td>
<td>0.009</td>
<td>3.883 (1.883)</td>
</tr>
<tr>
<td>원상환부담 가능액</td>
<td>0.100</td>
<td>42.495 (2.058)</td>
</tr>
</tbody>
</table>

화장대출기간에 유의한 영향을 미치는 독립변수는 직업과 소득뿐이다. 이러한 추정결과는 반드시 놀라울 정도의 결과는 아니다. 왜냐하면 대출기간은 가족생애주기와 관계 없이 대출기관에 혹은 정부정책에 따라 결정되기 때문이다. 그러나 원상환부담가능액은 가족생애주기(가구주 연령) 및 소득과 밀접한 관계를 가지고 있다. 학력도 유의한 독립변수이다. 동일한 조건하에서 대출자는 상대적으로 상환부담가능액을 늘릴 수 있다. <표 10>에서 원소득대비 원상환부담액비율을 가구주의 연령별·소득별로 시뮬레이션을 했다. 가구주 연령이 40세일 경우, 상환부담가능액비율은 소득이 100만원에서 500만원으로 증가할 때 41.9%에서 20.0%로 떨어진다. 그러나 소득이 250만원일 경우 상환부담가능액은 가구주 연령이 50세까지 떨어지더라도 60세 이상이 되면 다시 커진다. 이것이
가능한 이유는 가구주가 60세 이상이 되어 가족의 수축기를 맞이하게 되면서 소득이 하락하기 때문인 것 같다.

<표 10> 월소득대비 원상환부담율에 대한 시뮬레이션

(단위 : %)

<table>
<thead>
<tr>
<th>구분</th>
<th>연령</th>
<th>25세 미만</th>
<th>30세</th>
<th>35세</th>
<th>40세</th>
<th>50세</th>
<th>60세 이상</th>
</tr>
</thead>
<tbody>
<tr>
<td>소득</td>
<td>100만원</td>
<td>49.9</td>
<td>46.4</td>
<td>43.7</td>
<td>41.9</td>
<td>46.7</td>
<td>48.2</td>
</tr>
<tr>
<td></td>
<td>150만원</td>
<td>38.7</td>
<td>36.7</td>
<td>34.7</td>
<td>33.3</td>
<td>32.7</td>
<td>34.0</td>
</tr>
<tr>
<td></td>
<td>200만원</td>
<td>32.5</td>
<td>31.0</td>
<td>30.0</td>
<td>29.0</td>
<td>28.5</td>
<td>29.0</td>
</tr>
<tr>
<td></td>
<td>250만원</td>
<td>29.2</td>
<td>28.0</td>
<td>26.8</td>
<td>26.0</td>
<td>25.6</td>
<td>26.4</td>
</tr>
<tr>
<td></td>
<td>300만원</td>
<td>27.0</td>
<td>25.7</td>
<td>24.7</td>
<td>24.3</td>
<td>24.0</td>
<td>24.7</td>
</tr>
<tr>
<td></td>
<td>400만원</td>
<td>23.8</td>
<td>22.8</td>
<td>22.3</td>
<td>21.8</td>
<td>21.5</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>500만원</td>
<td>21.6</td>
<td>21.0</td>
<td>20.4</td>
<td>20.0</td>
<td>19.5</td>
<td>20.4</td>
</tr>
</tbody>
</table>

3. 주택구입의 확률 추정

앞서 다중회귀분석을 통해 가족생애주기와 우리나라 주택소비와 융자계획간의 관계를 파악하였다. 다음으로는 생애주기에 따라 주택을 구입할 확률이 어떻게 변화하는지 파악하고자 한다. 특히 주택정책을 담당하고 있는 관계부처와 시중 금융기관의 측면에서 볼 때 주택구입확률 추정은 매우 중요한 의미를 가진다. 왜냐하면 주택구입확률 정보는 향후 주택정책의 수립에 중요한 자료로 이용할 수 있을 뿐만 아니라 금융기관의 대출계획에도 전략적 요소로 작용하기 때문이다. 이러한 주택구입확률 추정을 위해 로지스틱회귀분석을 이용하였다. 본 연구에서 이용한 분석은 3단계를 거쳐 소비자의 주택 구입확률을 예측하게 된다.

우선 이론적 오드비율의 대수치(Log of the Odd Ratio)를 종속변수로 하고, 종속변수와 일정 수의 독립변수 간 관계를 최우추정방법(MLB Method : Maximum Likelihood Estimation Method)으로 추정한다. 모형의 추정식은 다음과 같이 표현된다.

\[\hat{\mu} \left(\frac{P(D=1)}{1-P(D)} \right) = a_0 + a_1 x_1 + a_2 x_1^2 + a_3 x_2 + a_4 x_2^2 + a_5 x_3 + a_6 x_4 + a_7 x_5 \]
\(P \) = 확률

\(x_1 \) = 가구주의 연령

\(x_2 \) = 가구소득

\(x_3 \) = Dummy 변수: 학력(대학원 졸 이상 = 1, 기타 = 0)

\(x_4 \) = Dummy 변수: 직업(자영업자 = 1, 기타 = 0)

\(x_5 \) = Dummy 변수: 지역(수도권 = 1, 비수도권 = 0)

<식 1>과 같이 설정된 로짓모형을 이용하여 그 결과를 다음의 누적적 로지스틱함수에 대입하면 다음과 같이 <식 2>를 얻을 수 있다.

\[
P(D=1) = \frac{1}{1 + e^{-(a_0 + a_1 x_1 + a_2 x_2^2 + a_3 x_3 + a_4 x_4 + a_5 x_5)}} \quad \text{<식 2>}
\]

실제 확률은 독립변수의 필요한 수치를 대입함으로써 추정이 가능하며, 본 연구에서는 수도권 가구, 자영업자, 대학원졸 이상, 가구주의 연령 그리고 가구소득의 경우에 해당하는 확률을 추정하였다.

즉, 이러한 경우의 Logistic 함수는 <식 3>과 같이 나타낼 수 있다.

\[
P(D=1) = \frac{1}{1 + e^{-(a_0 + a_5 x_5 + a_6 x_6) + a_7 x_7 + a_8 x_7^2 + a_9 x_7^3}} \quad \text{<식 3>}
\]

오드비율 대수 함수의 추정결과는 다음과 같이 나타난다.

\[
\ln \left[\frac{P(D=1)}{1-P(D=1)} \right] = 3.9668 + 0.1434 x_1 - 0.0012 x_1^2
\begin{align*}
& (0.000) \quad (0.000) \quad (0.000) \\
& + 0.0041 x_2 - 8.5 \times 10^{-7} x_2^2 - 0.0679 x_3 \\
& (0.000) \quad (0.000) \quad (0.750) \\
& + 0.0243 x_4 + 0.3997 x_5 \\
& (0.827) \quad (0.000) \quad \text{<식 4>}
\end{align*}
\]
추정결과에 따르면 주택구입확률은 가구주의 연령 및 소득과 밀접한 관계를 보이고 있다. 그러나 주택구입확률은 가구주의 연령 및 소득과 비선형적인 관계를 나타내고 있다. 연령이 일정하게 증가함에 따라 주택구입 확률이 증가하다가 연령이 계속 증가하면 주택구입 확률은 다시 둔화된다. 소득도 이와 유사한 패턴을 보이고 있다.

본 분석에서 독립변수가 일개 집단으로서 주택구입확률에 미치는 영향의 유의도는 Log Likelihood Test로 평가한다. Test는 Chi-Square 분포를 이용하여 추정된 Chi-Square 값(169.057)이 적절 Chi-Square 값(16.8)을 훨씬 초과함으로써 독립변수들이 주택구입 확률에 미치는 영향은 매우 유의하다고 볼 수 있다. 개별 독립변수의 유의도로 볼 때 연령 및 소득의 유의도는 매우 높은 것으로 나타났다. 이들 변수의 통계적 신뢰도는 100% 수준으로 분석되었다.

<표 11>에서 가구주의 연령 및 소득별 주택구입 확률을 예측하였다. 가구 주연령이 높아짐에 따라 주택구입확률이 증가하는 것으로 분석되었다. 예를 들어, 월소득이 250만원인 가구의 경우 주택구입확률은 25세의 54.88%부터 60세의 83.82%로 증가하였다. 또한 소득이 높을수록 주택구입확률은 커진다. 예를 들어 40세 가구주의 경우 주택구입확률은 소득 100만원의 64.73%에서 소득 500만원의 88.52%로 증가하는 것으로 나타났다.

<table>
<thead>
<tr>
<th>구분</th>
<th>연령</th>
<th>25세 미만</th>
<th>30세</th>
<th>35세</th>
<th>40세</th>
<th>50세</th>
<th>60세 이상</th>
</tr>
</thead>
<tbody>
<tr>
<td>소득</td>
<td>100만원</td>
<td>40.76</td>
<td>50.32</td>
<td>58.42</td>
<td>64.73</td>
<td>72.33</td>
<td>74.55</td>
</tr>
<tr>
<td></td>
<td>150만원</td>
<td>45.51</td>
<td>55.16</td>
<td>63.04</td>
<td>69.02</td>
<td>76.04</td>
<td>78.06</td>
</tr>
<tr>
<td></td>
<td>200만원</td>
<td>50.25</td>
<td>59.80</td>
<td>67.35</td>
<td>72.93</td>
<td>79.33</td>
<td>81.14</td>
</tr>
<tr>
<td></td>
<td>250만원</td>
<td>54.88</td>
<td>64.18</td>
<td>71.30</td>
<td>76.44</td>
<td>82.22</td>
<td>83.82</td>
</tr>
<tr>
<td></td>
<td>300만원</td>
<td>59.34</td>
<td>68.24</td>
<td>74.88</td>
<td>79.56</td>
<td>84.72</td>
<td>86.14</td>
</tr>
<tr>
<td></td>
<td>400만원</td>
<td>67.44</td>
<td>75.31</td>
<td>80.88</td>
<td>84.67</td>
<td>88.73</td>
<td>89.82</td>
</tr>
<tr>
<td></td>
<td>500만원</td>
<td>74.31</td>
<td>80.98</td>
<td>85.52</td>
<td>88.52</td>
<td>93.66</td>
<td>92.49</td>
</tr>
</tbody>
</table>

그러나 소득이 증가함에 따라 주택구입확률은 계속 증가하지만 증가율은 소득이 높 을수록 떨어진다. 예컨대 가구주의 연령이 30세일 경우, 소득이 100만원에서 200만원으 로 증가할 때 주택구입확률은 19%증가하는데 소득이 400만원에서 500만원으로 증가할
때 주택구입확률은 7.5%밖에 증가하지 않는다. 한편 주택구입확률은 가구주 연령이 증
가함수록 증가하지만 증가속도는 가구주 연령이 커질수록 둔화된다. 소득이 200만원의
경우, 가구주 연령이 25세에서 35세로 증가할 때 주택구입확률은 34.0%증가하는데 50세
에서 60세로 증가할 때 주택구입확률은 2.7%밖에 증가하지 않는다. 이와 같이 주택구입
확률은 생애주기나 소득수준에 따라 증가하나 증가율은 소득이 높을수록, 가구주 연령
이 높을수록 둔화된다.

기타 독립변수 중에서 지역(수도권-1.0)변수의 유의도가 높게 나왔으며 기타지역의
가구율보다 40%나 높게 나타났다. 이 결과는 약간 기대치에 못지은 결과다. 왜냐하면
정부에서 발표한 수도권 가구율은 전국평균보다 낮은 수준이기 때문이다. 문제는 자가
율의 정의자체에 있는 것 같다. 정부가 발표한 자가율은 소유위주가 아니고 거주위주의
자가율이어서 집을 소유한 사람이 전셋집에 살 경우 인구조사에서는 자가가구로 인정
을 하지 않는다. 본 논문에서 수도권 자가율이 비교적 높다는 결과는 수도권에는 집을
가지고 있으면서 세입자로 사는 사람들이 많다는 것을 반영할 수 있다.

V. 결론

생애주기가 주택소비에 미치는 영향에 대한 분석은 비교적 드물다. 주택수요와 소비
는 주택부족만이 해소됨에 따라 계속 다양해지고 또 자주 변할 것이다. 주택소비의 다
양성과 변화속도는 인구연령 구조변화에 따른 가족생애주기의 영향을 받게 된다. 따라
서 가구주 연령으로 나타나는 생애주기 및 소득변화가 주택소비에 어떠한 영향을 미치
는지를 파악하는 것이 중요하다. 본 논문에서는 바로 가족생애주기와 주택소비간의 관
계를 회귀분석을 통해 살펴보았다. 주택소비는 주택규모(전용면적, 방수)와 주택가격,
용지계획 및 주택구입확률 등 3개 부분으로 구분하고 독립변수로서 가족생애주기(가구주
연령), 소득, 직업, 학력 및 지역 등을 포함시켰다.

본 연구결과는 다음과 같이 요약할 수 있다. 첫째, 주택규모(전용면적 및 방수)는 생
애주기 및 소득에 따라 계속 증가하지만 가구주 연령 및 소득이 높아질수록 주택규모증
가율이 둔화된다. 둘째, 현재 주택규모대비희망주택규모비율은 가구주 연령이 높을수
록, 소득이 높을수록 작아진다. 다시 말해 가족생애주기가 전진할수록 소득이 높아질수록 희망했던 주택규모를 확보하게 된다는 것이다. 셋째, 주택가격도 생애주기와 소득과 밀접한 관계를 가지고 있다. 가구주 연령이 높을수록, 소득이 높을수록 현재 및 희망가격은 계속 늘어지지만 가격증가율은 둔화된다. 넷째, 현재가격대비 희망가격비율은 생애주기가 전진함에 따라 소득이 증가함에 따라 떨어진다. 즉, 가구주 연령이 높고 소득이 높아질수록 희망하는 가격의 주택을 구입할 수 있다는 가능성이 커진다. 십지어 60세의 가구주가 500만원의 소득이 있을 때 희망가격은 현재가격보다 7% 더 저렴하다. 다섯째, 응자가격변수 중에서 월용자상환능력이 생애주기와 밀접한 관계를 가지고 있다. 월상환부담가능비율(월상환액/월소득)은 가구주의 연령이 50세까지는 하락하다가 60세 이상이 되면 다시 증가한다. 가구주가 60세 이상이 되면 가구소득이 하락한다는 것을 반영하는 듯하다. 여섯째, 주택구입확률도 가족생애주기 및 소득과 유의한 관계를 가지고 있다. 소득이 높을수록 가구주 연령이 높을수록, 주택구입확률은 커지지만 증가율은 둔화된다.

주택규모, 가격 및 상환부담에 대한 분석결과는 정부정책수립, 금융기관의 저당대출 전략 및 주택업자의 건설계획수립에 유의한 정보를 제공한다. 생애주기에 따른 주택규모에 대한 정보는 정부의 최저주거기준 수정 그리고 주택건설업자의 주택건설호수의 규모별 배당전략에 중요한 자료가 될 수 있다. 생애주기에 따른 응자상환가능능력에 대한 연구자료는 금융기관의 차주의 신용평가에 도움이 될 것이다. 한편 주택구입확률에 대한 자료는 정부의 주택구입촉진정책, 주택건설업자의 자가주택 대 임대주택건설 비율 설정, 금융기관의 주택구입자금조달 전략수립에 많은 도움이 될 수 있다.

본 연구결과의 주목할 만한 점이 있다면 우리나라 주택소비형태가 선진국과는 다소 차이점을 보인다는 것이다. 선진국의 경우, 가족이 수축기에 점어들게 되면 대형주택보다는 소형주택, 자가주택보다는 임대주택을 선호하며 따라서 원하는 응자역 및 응자상환부담이 덜어지는 추세인데 반해 우리나라의 경우 본 연구자료에 의하면 가족의 수축기에 진입해서도 더 큰 집, 더 비싼 집을 원하고 계속 자가주택을 선호한다는 것이다. 즉, 우리나라 가구의 주택소비 욕구는 선진국의 그것보다 매우 강하게 나타난다는 것이다.
참고문헌

1. 김경환(1999), “인구의 연령구조 변화와 주택수요 및 주택가격”, 대한부동산학회지, 제17권
2. 오정일(2001), “한국에서의 소득, 부 그리고 주거유형의 선택문제”, 한국부동산학회, 국토계획, 제36권, 3호
3. 유영수·홍형욱(1983), “가족생활주기 모형설정과 주거의식 및 행동에 관한 연구”, 경희대학교 논문집, 제12권
5. 정의철(2002), “도시가구의 주택점유형태 및 주택유형선택에 관한 연구”, 주택은행, 주택금융소요실태조사

국문요약

생애주기와 주택소비에 미치는 영향에 관한 연구

본 연구는 가족생애주기(family life cycle)가 주택소비형태에 미치는 영향을 실증분석 하는데 목적이 있다. 주택소비(중속변수)는 1)주택규모(전용면적, 방수), 주택가격 및 가구년소득대비 주택매매가격비율(price income ratio: PIR), 2)가구의 응자계획, 3)주택점유형태(tenure)선택 등 3개 군으로 구분했다. 가족생애주기는 가구주의 연령 및 소득으로 계량화했으며 생애주기의 순계상을 추정하기 위해 가구주의 직업, 학력 및 지역도 독립 변수로 편입했다. 분석대상가구는 국민은행이 매년 실시하는 주택금융수요실태조사(2001)자료에 의한 것이며 추정방법은 주택점유형태선택의 경우 로짓(Logit)모형, 나머지 중속변수의 경우 전통적 회귀분석기를 적용했다.

추정결과는 다음과 같이 요약할 수 있다. 첫째, 주택규모(전용면적, 방수) 및 거주하고 있는 주택가격은 가구주 연령 및 소득과 매우 유의하고 비선형적 관계를 가지고 있다. 즉, 가구주 연령 및 소득이 높아짐에 따라 주택규모와 주택가격은 증가하지만 증가율은 녹화된다. 둘째, 현재주택규모대비 희망주택규모비율과 현재소득대비 희망소득비율 등은 가구주 연령과 소득이 높아짐수록 축소된다. 즉, 가족이 형성기, 확대기에서 안정기로 전환함에 따라 우리나라 가구는 원하는 규모 및 가격의 주택을 확보할 수 있는 가능성이 커진다는 것이다. 셋째, 월임자상환부담율은 소득이 증가할수록 떨어지지만 가구주 연령이 50세가 될 때까지는 하락하다가 60세를 넘어서면 다시 증가한다. 넷째, 주택구입확률은 가구주 연령 및 소득이 높아짐에 따라 커지지만 커지는 속도는 녹화된다.

이와 같이 우리나라 가구의 주택소비는 가족생애주기의 강한 영향을 받는다. 따라서 본 연구자료는 정부의 주택정책수립, 주택건설업자의 건설계획 및 은행의 응자전략에 도움이 될 수 있다고 생각한다.