아파트가격에 내재한
개발밀도 가치의 차이에 관한 연구*

Regional Difference of Development Density’s value on the Housing Prices

김 주 영**

본 연구는 개발밀도와 주택가격간의 상관성에 대한 기존 연구를 바탕으로 서울시아파트가격에서 나타나는 개발밀도의 차등적 영향력을 검증하고 이를 지역특성과 개발밀도와의 상관관계 하에서 분석하였다. 이를 위해 서울시 25개 구를 공간적으로 4개 권역으로 구분한 후 각각 2개씩 모두 8개구를 선정하고 특성가격함수를 구축한 후 구별 개발밀도 변수의 영향력을 검증하였다. 검증결과 서울시 아파트시장에서 개발밀도가 주택가격을 결정하는 주요한 변수임을 알 수 있었으며 지역별로 개발밀도가 주택가격에 미치는 영향력이 다른 것으로 분석되었다. 대체적으로 강남지역의 아파트가격에 내재된 개발밀도의 가격이 상대적으로 강북지역보다 큰 것으로 나타났다. 이것은 특성가격함수의 계수값이 해당 특성에 대한 가구의 지불의사소명액을 나타낸다고 볼 때 상대적으로 소득이 높은 가구들에 그만큼 많은 가구보다 평균적으로 개발밀도에 보다 큰 가격을 부여하고 있음을 의미한다. 따라서, 본 연구의 분석결과는 서울과 같은 대도시 주택시장을 대상으로 수립되는 주택정책은 이런 지역적 차이에 대한 고려가 필요함을 시사하고 있다.

* 본 논문은 본인의 박사학위논문의 일부를 수정·정리한 것입니다.
** 한국감정평가연구원 책임연구원
1. 연구의 목적 및 배경

용적률로 대표되는 아파트단지의 개발밀도는 재개발사업이나 재건축사업에서 사업 성공을 좌우하는 중요한 변수인 동시에 아파트단지의 주거환경 수준을 결정하는 지표라 할 수 있다. 최근 들어, 주거환경의 폐적성에 대한 가구의 수요가 중대하면서 대도시를 중심으로 단지의 개발밀도 수준이 아파트가격을 결정하는 중요한 요인으로 부각되고 있다. 주거환경의 아파트를 하위수준에서부터 상위수준으로 분류한 연구에 의하면 아파트단지의 주거환경을 아파트단지의 인장성이거나 주변 상업시설 이용의 편리성, 녹 지·조망·오픈스페이스와 같은 폐적성으로 구분하였다. 본 연구의 분석대상인 아파트 단지의 개발밀도는 이들 주거환경의 아파트 중에서 폐적성을 좌우하는 요소라 할 수 있다.

우리나라의 경우 아파트를 중심으로 한 공동주택의 고밀개발은 아파트 단지내 공용 공간의 축소를 통해 이루어졌으므로(강부성언, 2000) 개발밀도의 상승은 필연적으로 단 지내 오픈스페이스, 녹지율, 조망 수준을 저하시키게 된다. 그 결과 아파트가격 결정모 델을 다루고 있는 대부분의 연구들에서 개발밀도 변수는 가격과 부의 상관성을 가지는 것으로 검증되었다.

그러나, 개발밀도가 주택가격에 미치는 영향력은 해당 아파트단지가 입지한 지역이 어떤 특성을 가지느냐에 따라서 차등적인 해석을 보일 것으로 생각된다. 즉, 아파트단 지 주변지역이 상대적으로 저출의 양호한 주거환경을 가지고 있는 경우 개발밀도의 영 항력이 더욱 클 것으로 생각할 수 있으며 가구들이 개발밀도의 가치를 높게 평가할수록 개발밀도의 영향력은 높게 나타날 것이다.

본 연구에서는 개발밀도가 주거환경에 미치는 부정적 영향력이 지역주민의 소득수준에 따라 차등적으로 나타남을 검증하고자 한다. 소득수준이 높은 지역에서 개발밀도가 주택가격에 미치는 영향력이 그렇지 않은 지역에 비해 더 클 경우 개발밀도의 규제수준을 차등화함으로써 개발밀도 규제 정책의 효율성을 높일 수 있을 것이다.

일반적으로 아파트단지의 개발밀도 수준을 평가하는 지표로는 용적률, 건폐율, 호수 밀도 등을 고려할 수 있으나 본 연구에서는 용적률 변수를 체택하였다. 용적률 변수는 개발밀도를 나타내는 가장 일반적인 변수라 할 수 있으며 개발의 양을 포함하고 있으므
로 다른 지표들보다 도시계획적 차원에서 더 그 의미를 지니고 있는 것으로 판단하였기 때문이다.

II. 개발밀도와 주거환경간의 선행연구 검토

1. 개발밀도 증가가 주거환경에 미치는 영향

공동주택단지 건설에 있어서 개발밀도는 세대수, 충수, 주호형, 부대복리시설 규모 등 계획요소 전반에 걸쳐 큰 영향을 미치는 기본지표이다. 건설기획단계에서 결정되는 개 발밀도는 후속되는 계획, 설계단계의 기본 전제가 되며, 이에 따라 건설후의 단지환경 수준도 이 개발밀도에 의해 영향을 받게 된다. (대한주택공사, 1989) 단지환경수준에 대한 평가는 옥외공간 특성 분석이나 주거만족도 평가를 통해서 이루어질 수 있으며 개발 밀도의 증가는 옥외공간의 양적인 감소를 가져오고 필연적으로 주거만족도를 저하시키게 됨은 기존 연구에서 검증된 바 있다. 또한 개발밀도 증가에 따른 주거만족도의 감소는 동일 단지내에서도 가구의 사회·경제적 특성이나 거주 충수에 따라서 편차를 보일 수는 있을 것이다.

주택재개발사업을 통해 건립된 아파트단지의 경우 이런 개발밀도의 부정적 영향력이 가장 두드러지게 나타난 경우라 할 수 있다. 주택재개발아파트의 경우 입지적 특성을 고려치 않은 단지개발 방식을 채택함으로써 주변지역에 미치는 부정적 효과가 큰 대표적 사례이다. 재개발아파트는 고지대에 입지한 경우가 많아서 고밀개발의 결과 위험적 경관을 형성하고 있으며(조용수, 1997), 주변지역에 미치는 교통혼잡과 파밀의 문제가 심각한 것으로 나타난 바 있다(김영환, 1997). 최근에는 고밀개발된 재개발아파트의 개 발특성이 주변지역에 미치는 외부불경제 뿐만 아니라 재개발아파트 단지의 주거환경 수준을 저하시키고 있는 요인으로 평가되고 있다.

재개발아파트 단지의 주거환경 평가에 대한 연구에서는(김미정, 윤정숙, 2000) 주거단 지의 고밀화로 건폐면적과 주차장 면적이 증가함에 따라 실질적인 오픈스페이스가 급 속히 감소하고 있음을 지적하였다. 이 연구에서는 단지내 오픈스페이스 확보와 적극적
인 논적공간 계획의 필요성을 제안하였다. 주택개발영역 단지의 옥외공간 특성에 대한 연구에서는(박영준, 1997) 재개발영역 단지들의 공용공간이 상대적으로 작아서 주민들의 주거생활도를 저하시키고 있는 것으로 분석하였다.

주거지 선택시 주거환경의 평가성은 과거에 비해 더욱 중요한 고려요소가 되고 있다. 아파트단지의 경우 주거환경의 구성요소를 개별 주요, 단지내부, 주변지역으로 나눌 경우 상대적으로 과거에 비해서 개별주요 보다는 단지내부 환경이나 주변지역환경을 중시한다는 점이다. 이같은 가구의 선호도 변화는 주택가격문항을 이용한 주택가격 결정 요인 연구들이 이를 뒷받침하고 있다. 특성가격문항을 적용한 일련의 연구들은 아파트 가격의 결정인자로 주택, 소음 등의 요소들이 주택가격 결정에 유의미한 요인임을 밝히고 있다. 주거환경 구성요소에 대한 거주자의 테도를 분석한 연구(조성희, 강혜경, 2000)에서는 소득이 높음수록 평가성과 경관·경지성에 대한 중요도를 높게 평가하는 것으로 분석되었다.

2. 개발밀도의 금전적 가치 평가

특성가격문항을 이용한 주택가격 결정요인 연구들은 90년대 이후에 많이 이루어졌으며 연구자와 연구범위, 지역에 따라 다양한 변수들을 활용하여 주택가격 결정요인을 분석하고 있다. 특성가격문항을 통해서 주택가격 결정요인을 분석한 최근의 연구들 중에서 개발밀도 변수를 포함한 연구를 검토해보면 대체적으로 개발밀도는 주택가격에 부(부)의 영향력을 주고 있음을 알 수 있다.(표 1참조)

<table>
<thead>
<tr>
<th>연구자</th>
<th>연구대상</th>
<th>포함변수</th>
<th>용적율의 영향력 분석결과</th>
<th>주택가격과 관계</th>
<th>영향력 정도</th>
</tr>
</thead>
<tbody>
<tr>
<td>조주현(1998)</td>
<td>서울시 아파트</td>
<td>단지면적,최장실수,최초임주일</td>
<td>-</td>
<td>시간이 갈수록 영향력이 커짐(회귀분석)</td>
<td></td>
</tr>
<tr>
<td>Xiaoli Gao Asami(2000)</td>
<td>동경역 부근 단독주택</td>
<td>녹지접근성, 건물타입 등 23개</td>
<td>+</td>
<td>1% 증가시 주택가격 12만원(1㎡당) 증가</td>
<td></td>
</tr>
<tr>
<td>배수진(2000)</td>
<td>분당,일산 아파트</td>
<td>녹지접근성 등 12개 변수</td>
<td>+, -</td>
<td>모형에 따라 영향력이 불규칙함.</td>
<td></td>
</tr>
<tr>
<td>이성경·신우진(2000)</td>
<td>강남구 아파트</td>
<td>평수 등 13개 변수</td>
<td>-</td>
<td>1% 증가시 평당 주택가격이 4만원 하락</td>
<td></td>
</tr>
<tr>
<td>구본창(2001)</td>
<td>분당아파트</td>
<td>총,향,조망 등 44개 변수</td>
<td>-</td>
<td>용적률 2배시 4% 감소</td>
<td></td>
</tr>
<tr>
<td>윤정중·류완(2001)</td>
<td>분당아파트</td>
<td>조망관련 변수 등 19개 변수</td>
<td>-</td>
<td>조망모형의 경우 1% 증가시 주택가격이 10만원 하락</td>
<td></td>
</tr>
<tr>
<td>김창석·김주영(2002)</td>
<td>재개발 아파트</td>
<td>평수 등 7개 변수</td>
<td>-</td>
<td>1% 증가시 주택가격이 0.15% 하락</td>
<td></td>
</tr>
</tbody>
</table>

배수진(2000)의 경우 녹지와의 접근성과 주택가격간의 영향력을 분석하고 있으며 분당과 일산의 아파트단지를 대상으로 하고 있다. 이 연구에서 발표하는 녹지란 산과 공원과의 인접성 여부를 기준으로 하고 있으며 디미변수를 사용하였다. 또한, 녹지에 대한 계수값이 가구의 지불의사를 나타낸다고 볼 수 있으므로 소득수준에 따라 녹지에 대한 지불의사 차이를 분석하였다. 그 결과 소형평형에 비해 대형평형에서 녹지가 주택가격에 미치는 영향력이 더 큰 것으로 분석되었다. 한편, 이 연구에서 용적률 변수의 경우 특성가격분석 모형에 따라서 주택가격에 미치는 영향력이 불규칙한 것으로 분석되었으며 그 영향력도 매우 작았다.

이 연구에서는 개발밀도와 주택가격간의 상관성이 기존 연구에서와는 다르게 개발밀도가 올라갈수록 오히려 주택가격을 상승시키는 효과가 있는 것으로 나타났다.

분당의 아파트 단지를 대상으로 주택가격의 결정요인을 분석한 구본창과 송현영 (2001)의 연구에서는 모두 44개의 변수를 이용하여 주택가격 결정모델을 분석하였다. 다른 연구들과 달리 매우 많은 변수를 사용하였는데 개별 단지의 특성을 반영하는 매우 미세적인 변수까지 포함하여 모델을 구성했다는 특징을 가지고 있다. 분석결과 아파트 단지의 용적률은 현재 단지의 평균용적률이 2배로 증가할 경우에 주택가격을 4% 하락시키는 효과가 있는 것으로 집중되었다.

윤경중, 유완(2001)의 연구에서는 분당의 아파트단지를 대상으로 조망이 주택가격에 미치는 영향력을 분석하였다. 주택가격에서 조망이 차지하는 영향력에 대해서는 이미 기존 연구들에서 확인된 바 있다. 이 연구에서는 조망을 여러 가지 유형으로 구분하고 각 유형별 조망이 주택가격에 미치는 영향력을 파악하였다. 조망유형에서 용적률 변수의 영향력은 1% 증가시 주택가격을 10만원 하락시키는 것으로 분석되었다. 그러나 베수진의 연구에서와 마찬가지로 함수식에 따라 개발밀도의 주택가격에 대한 영향력이 없어지기도 하였다.

재건축 가능성과 주택가격간의 영향력을 분석한 연구에서는(이상경, 신우진, 2001) 강남구의 아파트 단지를 대상으로 용적률이 1% 증가시 평당 주택가격을 4만원 하락시키는 것으로 분석하였다. 재건축 가능성 은 아파트 단지의 현재 용적률과 준공년수로 설명하고 있으며 실증 분석 결과, 아파트 단지의 현재 용적률이 낮을수록 아파트 가격이 올라가며, 준공 된지 17년까지는 아파트 가격이 떨어지지만 이후 반등하는 것으로 나타났다. 이같은 결과가 나타난 것은 현재 용적률이 낮을수록 재건축후 예상되는 개발이익이 높기 때문에 현재 주택가격에 재건축에 따른 개발이익이 반영된 결과라 볼 수 있다. 이 연구의 경우 용적률 지표는 주거환경을 나타내는 변수가 아니라 장래 주택가격 상승에 대한 기대변수로 활용되었다.

아파트 용적률이 주택가격에 미치는 영향력을 분석한 연구(김창식·김주영, 2001)에서는 주택재개발아파트를 중심으로 개발밀도의 정태적·동태적 영향력을 분석한 바 있다. 주택재개발아파트의 경우 아파트단지의 평균 용적률이 1% 증가할 때 주택가격을 0.15% 하락시키는 것으로 나타나 기존 연구에 비해서 개발밀도가 주택가격에 미치는 영향력 정도가 가장 큰 것으로 분석되었다.
발밀도와 주택가격간의 상관성을 분석한 기존 연구들은 대부분 발밀도 변수가 주택가격에 유의미한 변수임을 확인하고 있으며 발밀도와 증가는 주택가격을 하락시키는 요인이 되고 있다. 본 연구는 서울시와 같은 대도시에서 지역별 소득수준에 따라 발밀도가 주택가격에 미치는 영향력이 차등적임을 검증함으로써 발밀도 규제관련 주택정책에 시사점을 도출하고자 한다.

Ⅲ. 연구 모델 및 분석대상 지역 선정

1. 연구의 모델

발밀도가 주택가격에 유의미한 영향력을 주는 인자인지를 분석하기 위해서는 발밀도 이외에 변수들을 독립변수에 포함시켜 주택가격함수를 구성할 필요가 있다. 특정 가격함수의 합성형태에는 편의식 선형, 로그, 역존로그, 터룰로그 모형 중에서 선택하는 것이 일반적인 추세이며 본 연구에서는 발밀도의 영향력을 위한 추정시 준로그 모델을 채택하였다. 그것은 앞서의 네가지 함수형태중 추정계수의 유의성이나 모델의 설명력이 가장 좋은 것으로 판명되었기 때문이다.

\[
\ln(P_i/S) = a_0 + a_1 FAR + \sum \beta_p S_{pi} + \sum g L_{gj} + \epsilon_i
\]

\[P_i: 아파트가격\]
\[S: 평수\]
\[FAR: 아파트 단지 연해 용적률\]
\[S_{pi}, L_{gj}: 각각 구조특성, 임지특성\]
\[a_0, a_1, \beta_p, g, \epsilon_i: \text{파라メ터}, \epsilon_i: 오차항\]

특성가격함수를 추정하기 위해 사용된 변수는 주택의 물리적 특성변수인 평수, 가구 당 주차대수, 복도유형, 난방방식 변수를 이용하였다. 건축년도와 건축년도 제곱변수는 재건축에 대한 기대심리를 반영한 변수라 할 수 있으며 강남구 아파트에 대한 연구(이 상경, 신호진, 2001)에서는 강남구 아파트의 경우 재건축사업에 대한 기대심리로 아파트
트 건립후 17년을 기점으로 다시 주택가격이 상승하게 됨을 검증한 바 있다.\(^1\)

<table>
<thead>
<tr>
<th>변수명</th>
<th>단위</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPRICE</td>
<td>만원</td>
<td>평당아파트 가격</td>
</tr>
<tr>
<td>PYUNG</td>
<td>평</td>
<td>주택 규모(평형)</td>
</tr>
<tr>
<td>CAR</td>
<td>대</td>
<td>가구당 주차대수</td>
</tr>
<tr>
<td>TYPE</td>
<td>터미</td>
<td>1=계단식, 0=복도식</td>
</tr>
<tr>
<td>HEAT</td>
<td>터미</td>
<td>1=중앙·지역난방, 0=개별난방</td>
</tr>
</tbody>
</table>

또한, 임지특성 변수로 단지의 평균 용적률과 단지로부터 가장 가까운 지하철역까지의 거리, 아파트단지 주변의 학교수를 이용하였다. 단지 주변의 학교수와 지하철역까지의 거리는 부동산뱅크 사이트에서 제공해주는 GIS프로그램을 이용하여 웹상에서 직접 측정하였으며 아파트단지 주변의 학교수는 단지로부터 반경 750m를 기준으로 초·중·고등학교수를 말한다. 특성가격함수 추정을 위한 주택가격 자료는 2001년 8월을 기준으로 한 아파트 시세자료이며 상한가와 하한가를 평균한 값을 사용하였다. 아파트단지로부터 도심까지의 거리에서 도심은 서울시청을 기준으로 했으며 단지와 시청까지의 직선거리를 측정하였다.

2. 분석 대상 구의 선정

고원용(2000)의 경우 서울시 주택시장을 평균 주택가격을 기준으로 하위시장과 상위

\(^1\) 용적률 변수가 가진 환경제로서의 가치와 자본이익에 대한 가치를 설명히 분리하는 것이 쉽지 않다. 따라서, 용적률 변수가 지난 장래 자본이익에 대한 기대는 건축년도와 건축년도 개별변수를 포함시킴으로써 통제하였다.
시장으로 나누어 특성가격수를 추정한바 있다. 또한 교육환경이 주택가격에 주는 영향력을 분석하기 위한 송명규(1992)의 연구에서는 서울을 크게 강북지역, 강남동지역(서초, 강남, 송파, 강동구), 강남서지역(영등포, 관악, 동작, 구로, 양천, 강서구)으로 구분하고 있다. 이 연구에서는 Tiebout의 가설을 이론적 틀로 이용해서 주로 동별 특성변수로서 지방공공재가 주택가격에 주는 영향력을 분석하고 있다.

본 연구의 경우 특성가격수 추정을 위해서 서울시 전체를 4개의 권역으로 구분하고 전체 인구와 구별 주택재고에서 아파트가 차지하는 비율을 고려해서 모두 8개의 구를 선정하였다.(표 3) 참조)

서울을 크게 4개 권역으로 나누어 분석하는 방법은 한강을 기준으로 강남과 강북으로 구분하고 다시 강남지역은 강남동, 강남서 지역으로 나누며 강북지역은 종로, 중구 등을 중심으로 한 강북서 지역과 강북동 지역으로 나누었다. 대상지역은 지리적 접근성과 지역소득을 기준으로 선정하였다. 지리적 접근성을 기준으로 삼은 것은 거리가 가까운 주택은 수록 개발의 시기가 비슷하고 주변환경을 공유하는 부분이 많아지기 때문이 다. 또한, 아파트단지가 입지한 지역특성중의 하나인 가구소득에 따라 개발밀도와의 영향력이 차등적으로 나타나는지를 분석하기 위해 구별 가구소득의 차이는 전체 가구중에서 초대졸이상 졸업자의 비중을 소득의 대리변수로 활용하였다. 이것은 가구소득에 대한 통계자료를 얻을 수 없기 때문이며 우리나라의 경우 학력수준과 소득과는 상관성이 매우 높은 것으로 알려져 있으므로 이 변수를 소득의 대리변수로 활용하였다.

서울시를 공간적 거리에 따라 크게 4개 권역으로 구분하고 각각 2개의 구를 선정할 때의 원칙은 가급적 권역별 구간의 차이는 적으며 권역간 차이가 반영된 구를 선정한다는 점이다. 선정의 기준은 전체 주택재고에서 공동주택이 차지하는 비중과 구별 소득수준을 감안하였다. 2000년 인구주택총조사에 의하면 서울시 총 주택재고중 아파트가 차지하는 비율은 50%를 차지하고 있을 정도로 주요한 주거양식으로 자리잡고 있다. 그러나 주택유형별로 주택재고에서 차지하는 비중은 구별로 상이하게 나타났는데 강남구의 경우에는 전체 70%가 공동주택이 반면 강북지역의 중랑구의 경우에는 15%에 불과하다. 따라서 대상구의 선정원칙의 기준인 아파트 비율과 가구소득 수준은 해당 권역의 특성을 적절히 반영할 수 있도록 선정하였다.

특성가격수 함수 구축에 포함된 8개구의 대상단지는 총 618개 단지이며 표본수는 2,070개이다. 구별 표본분포에서는 강남구가 149개 단지 483개 단지로 가장 많으며 마포구가
<table>
<thead>
<tr>
<th></th>
<th>전체 인구</th>
<th>아파트(%)</th>
<th>대출자비율</th>
<th>표본 구 선정</th>
</tr>
</thead>
<tbody>
<tr>
<td>강북서 지역</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>온평구</td>
<td>442604</td>
<td>12</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>서대문구</td>
<td>351625</td>
<td>37</td>
<td>23</td>
<td>●</td>
</tr>
<tr>
<td>마포구</td>
<td>367220</td>
<td>33</td>
<td>25</td>
<td>●</td>
</tr>
<tr>
<td>종로구</td>
<td>170118</td>
<td>20</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>중구</td>
<td>135173</td>
<td>38</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>용산구</td>
<td>231484</td>
<td>37</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>전체</td>
<td>1,698,224</td>
<td>29</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>강북동 지역</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>성동구</td>
<td>325251</td>
<td>48</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>광진구</td>
<td>381568</td>
<td>37</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>동대문구</td>
<td>367596</td>
<td>35</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>중랑구</td>
<td>440863</td>
<td>44</td>
<td>15</td>
<td>●</td>
</tr>
<tr>
<td>성북구</td>
<td>460511</td>
<td>28</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>강북구</td>
<td>340765</td>
<td>22</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>도봉구</td>
<td>352702</td>
<td>32</td>
<td>22</td>
<td>●</td>
</tr>
<tr>
<td>노원구</td>
<td>606394</td>
<td>86</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>전체</td>
<td>3,275,650</td>
<td>52</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>강남서 지역</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>강서구</td>
<td>504480</td>
<td>57</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>양천구</td>
<td>459643</td>
<td>55</td>
<td>24</td>
<td>●</td>
</tr>
<tr>
<td>구로구</td>
<td>392541</td>
<td>49</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>영등포구</td>
<td>390035</td>
<td>59</td>
<td>24</td>
<td>●</td>
</tr>
<tr>
<td>금천구</td>
<td>268586</td>
<td>43</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>동작구</td>
<td>401133</td>
<td>39</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>관악구</td>
<td>505036</td>
<td>27</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>전체</td>
<td>2,921,454</td>
<td>64</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>강남동 지역</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>서초구</td>
<td>368339</td>
<td>64</td>
<td>40</td>
<td>●</td>
</tr>
<tr>
<td>강남구</td>
<td>523350</td>
<td>76</td>
<td>39</td>
<td>●</td>
</tr>
<tr>
<td>송파구</td>
<td>633956</td>
<td>69</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>강동구</td>
<td>474244</td>
<td>63</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>전체</td>
<td>1,999,889</td>
<td>70</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

주: 대출자비율은 전문대이상의 학력을 가진 가구가 전체가구에서 차지하는 비중임.
48개 단지 152개로 가장 작다. 특성가격함수 구축을 위해 사용된 자료는 대부분 부동산 맹크에서 제공된 자료를 이용하였으며 개발밀도 변수의 경우 서울시정개발연구원의 자료를 활용하였다.

<table>
<thead>
<tr>
<th></th>
<th>단지수</th>
<th>표본수</th>
<th></th>
<th>단지수</th>
<th>표본수</th>
</tr>
</thead>
<tbody>
<tr>
<td>중랑구</td>
<td>56</td>
<td>159</td>
<td>강남구</td>
<td>149</td>
<td>483</td>
</tr>
<tr>
<td>도봉구</td>
<td>68</td>
<td>230</td>
<td>서초구</td>
<td>110</td>
<td>324</td>
</tr>
<tr>
<td>서대문구</td>
<td>41</td>
<td>155</td>
<td>양천구</td>
<td>66</td>
<td>244</td>
</tr>
<tr>
<td>마포구</td>
<td>48</td>
<td>152</td>
<td>영등포구</td>
<td>80</td>
<td>323</td>
</tr>
<tr>
<td>전체</td>
<td>618</td>
<td>2070</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV. 개발밀도가 주택가격에 미치는 영향력 차이에 대한 분석

1. 대상지역의 특성 분석

분석에 포함된 8개 구의 평균 평당가격은 569만원이며 평수는 31.8평이다. 아파트에 입주한 기간은 9.5년이며 평균 가구당 주차대수는 1.08대이다. 아파트단지의 복도유형은 평균 60%의 단지가 계단식이며 나머지는 복도식이다. 또한, 난방방식은 중앙난방이나 지역난방을 채택하는 단지가 전체 57%를 차지하고 있으며 나머지 단지들은 개별난방을 채택하고 있다.

실증분석에 포함된 아파트단지의 평균 용적률은 265%로 나타났으며 최근에 건설된 아파트단지일수록 단지의 용적률이 높아지는 것으로 분석되었다. 아파트가격을 설명하는 입지특성 변수인 지하철역까지의 거리는 평균 645미터이며 아파트단지 주변의 학교 수는 대략 5개를 넘는 것으로 나타났다. 또한 아파트단지로부터 서울시청까지의 평균 거리는 8천7백미터였다.

서울시 25개 자치구의 아파트시장을 평균 평형과 주택가격의 분포를 표시해보면 강
<표 5> 기초통계량 분석

<table>
<thead>
<tr>
<th></th>
<th>평균</th>
<th>표준편차</th>
<th>최소값</th>
<th>최대값</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPRICE(만원)</td>
<td>569</td>
<td>174.31</td>
<td>339.28</td>
<td>1450</td>
</tr>
<tr>
<td>PYUNG(평)</td>
<td>31.8</td>
<td>10.61</td>
<td>9</td>
<td>85</td>
</tr>
<tr>
<td>YEAR(년)</td>
<td>9.51</td>
<td>9.51</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>YEARS2(년)</td>
<td>151.1</td>
<td>206.01</td>
<td>0</td>
<td>1024</td>
</tr>
<tr>
<td>CAR(대)</td>
<td>1.08</td>
<td>0.42</td>
<td>0</td>
<td>3.4</td>
</tr>
<tr>
<td>TYPE</td>
<td>0.6</td>
<td>0.48</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HEAT</td>
<td>0.57</td>
<td>0.49</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>FAR(%)</td>
<td>265.37</td>
<td>102.654</td>
<td>72</td>
<td>934</td>
</tr>
<tr>
<td>SUBWAY(M)</td>
<td>645.66</td>
<td>433.32</td>
<td>30.07</td>
<td>2275.37</td>
</tr>
<tr>
<td>SCHOOL(개)</td>
<td>5.16</td>
<td>2.52</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>DISTANCE(M)</td>
<td>8739.7</td>
<td>2742.50</td>
<td>1597</td>
<td>14647</td>
</tr>
</tbody>
</table>

남구, 서초구를 중심으로 한 강남지역이 평균 평형이나 주택가격이 가장 높게 형성되어 있음을 알 수 있다. 강남구와 서초구의 경우 평균 3억 7천만원에서 3억 8천만원이며 평균 입주년도가 각각 1987년, 1986년으로 나타났다.

<표 6> 구별 주택의 물리적 특성 분석

<table>
<thead>
<tr>
<th></th>
<th>평수</th>
<th>주택가격(만원)</th>
<th>입주년도</th>
<th>주차대수</th>
<th>복도유형</th>
<th>난방방식</th>
</tr>
</thead>
<tbody>
<tr>
<td>도봉구</td>
<td>28.67</td>
<td>13064.57</td>
<td>1992</td>
<td>1.00</td>
<td>0.54</td>
<td>0.73</td>
</tr>
<tr>
<td>중랑구</td>
<td>30.31</td>
<td>14793.57</td>
<td>1994</td>
<td>1.11</td>
<td>0.52</td>
<td>0.41</td>
</tr>
<tr>
<td>강남구</td>
<td>34.52</td>
<td>38027.95</td>
<td>1987</td>
<td>1.04</td>
<td>0.64</td>
<td>0.72</td>
</tr>
<tr>
<td>서초구</td>
<td>37.55</td>
<td>27737.65</td>
<td>1986</td>
<td>1.15</td>
<td>0.56</td>
<td>0.78</td>
</tr>
<tr>
<td>서대문구</td>
<td>32.09</td>
<td>18365.12</td>
<td>1993</td>
<td>1.17</td>
<td>0.70</td>
<td>0.4</td>
</tr>
<tr>
<td>마포구</td>
<td>31.36</td>
<td>19627.96</td>
<td>1992</td>
<td>1.14</td>
<td>0.46</td>
<td>0.35</td>
</tr>
<tr>
<td>양천구</td>
<td>36.20</td>
<td>26852.88</td>
<td>1993</td>
<td>1.01</td>
<td>0.66</td>
<td>0.76</td>
</tr>
<tr>
<td>영등포구</td>
<td>31.7</td>
<td>19366.41</td>
<td>1989</td>
<td>1.07</td>
<td>0.63</td>
<td>0.51</td>
</tr>
<tr>
<td>전체</td>
<td>31.80</td>
<td>19068.17</td>
<td>1991</td>
<td>1.087</td>
<td>0.61</td>
<td>0.57</td>
</tr>
</tbody>
</table>
분석에 포함된 강남구와 서초구의 경우 평균 평형은 각각 34.5평과 37.5평으로 나타났다. 그리고 강남지역의 양천구 역시 36.2평으로 다른 구에 비해 평균 평수가 큰 것으로 나타났다. 임주년도를 기준으로 볼 경우 강남구와 서초구의 아파트들이 평균 건축 년도가 가장 오래된 것으로 나타나서 이들 지역 아파트의 상당수가 재건축 대상임을 유추할 수 있었다. 주차대수의 경우에는 구간 큰 차이를 보이는 것은 없였으나 강북지역의 서대문구와 마포구가 각각 1.15대와 1.14대로 많은 편이었다.

<table>
<thead>
<tr>
<th>구분</th>
<th>용적률(%)</th>
<th>학교수 학생수</th>
<th>지하철거리(m)</th>
<th>도심거리(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>도봉구</td>
<td>249.27</td>
<td>7.47</td>
<td>782.31</td>
<td>11339</td>
</tr>
<tr>
<td>중랑구</td>
<td>308.31</td>
<td>4.53</td>
<td>861.97</td>
<td>10613</td>
</tr>
<tr>
<td>강남구</td>
<td>219</td>
<td>4.66</td>
<td>579.14</td>
<td>9764</td>
</tr>
<tr>
<td>서초구</td>
<td>260.8</td>
<td>4.24</td>
<td>542.96</td>
<td>8092</td>
</tr>
<tr>
<td>서대문구</td>
<td>291.63</td>
<td>4.65</td>
<td>643.86</td>
<td>4020</td>
</tr>
<tr>
<td>마포구</td>
<td>280.40</td>
<td>5.37</td>
<td>463.56</td>
<td>4580</td>
</tr>
<tr>
<td>양천구</td>
<td>230.44</td>
<td>5.18</td>
<td>978.79</td>
<td>11014</td>
</tr>
<tr>
<td>영등포구</td>
<td>262.8</td>
<td>4.57</td>
<td>461.75</td>
<td>8608</td>
</tr>
<tr>
<td>전체</td>
<td>265.37</td>
<td>5.17</td>
<td>645.67</td>
<td>8898</td>
</tr>
</tbody>
</table>

아파트 단지의 평균 용적률은 강북지역의 중랑구가 308%로 가장 높고 강남지역의 강남구가 219%로 가장 낮다. 특히, 강남지역의 상당수 아파트가 재건축 대상임을 고려할 때 오래된 아파트임수록 개발밀도가 상대적으로 낮다는 것을 알 수 있다. 아파트 단지 주변의 학교수는 도봉구의 경우가 가장 많은 것으로 나타났으며 단지와 지하철까지의 거리 면에서는 강남구와 양천구의 아파트 단지들이 접근성이 좋은 편이며 양천구와 중랑구의 경우 접근성이 가장 낮은 것으로 분석되었다. 도심까지의 접근성의 경우는 서대문구와 마포구가 가장 좋고 도봉구와 중랑구, 양천구 등은 접근성이 가장 떨어지는 것으로 나타났다.
2. 구별 특성가격 함수 추정 결과

준로그모델을 기준으로 한 특성가격 함수 추정결과 평수의 경우 계수값은 0.2에서 1.1로 나타나 구별로 평수 증가에 따른 주택가격의 영향력 정도가 차등적임을 알 수 있었 다. 용적률이 주택가격에 미치는 영향력은 용적률 1% 증가시 중량구는 0.099%, 도봉구 는 0.04%, 서대문구와 마포구는 0.05% 주택가격을 하락시키는 효과가 있는 것으로 나타 났다. 강북지역 중량구의 경우 용적률이 주택가격에 미치는 영향력 정도가 가장 낮은 것으로 분석되었다.

<표 8> 강북지역 특성가격함수 추정결과

<table>
<thead>
<tr>
<th></th>
<th>추정계수</th>
<th>t값</th>
<th>추정계수</th>
<th>t값</th>
</tr>
</thead>
<tbody>
<tr>
<td>중량구</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>평수</td>
<td>0.006</td>
<td>4.25**</td>
<td>용적률</td>
<td>-0.0007</td>
</tr>
<tr>
<td>전측면도</td>
<td>-0.03</td>
<td>-5.85**</td>
<td>지하철거리</td>
<td>-0.0009</td>
</tr>
<tr>
<td>전측면도제곱</td>
<td>0.0012</td>
<td>5.41**</td>
<td>주변학교수</td>
<td>-0.02</td>
</tr>
<tr>
<td>주차대수</td>
<td>0.006</td>
<td>0.31</td>
<td>도심거리</td>
<td>0.00003</td>
</tr>
<tr>
<td>복도유형</td>
<td>0.023</td>
<td>1.21</td>
<td>R^2</td>
<td>0.57</td>
</tr>
<tr>
<td>난방방식</td>
<td>0.035</td>
<td>1.62*</td>
<td>F값</td>
<td>19.41</td>
</tr>
<tr>
<td>도봉구</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>평수</td>
<td>0.006</td>
<td>5.82**</td>
<td>용적률</td>
<td>-0.0004</td>
</tr>
<tr>
<td>전측면도</td>
<td>-0.02</td>
<td>-3.06**</td>
<td>지하철거리</td>
<td>-0.0001</td>
</tr>
<tr>
<td>전측면도제곱</td>
<td>0.00049</td>
<td>1.09</td>
<td>주변학교수</td>
<td>0.002</td>
</tr>
<tr>
<td>주차대수</td>
<td>0.04</td>
<td>1.65*</td>
<td>도심거리</td>
<td>0.00003</td>
</tr>
<tr>
<td>복도유형</td>
<td>0.092</td>
<td>5.65**</td>
<td>R^2</td>
<td>0.51</td>
</tr>
<tr>
<td>난방방식</td>
<td>0.08</td>
<td>4.11**</td>
<td>F값</td>
<td>20.52</td>
</tr>
<tr>
<td>서대문구</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>평수</td>
<td>0.0038</td>
<td>2.58**</td>
<td>용적률</td>
<td>-0.0005</td>
</tr>
<tr>
<td>전측면도</td>
<td>-0.07</td>
<td>-6.90**</td>
<td>지하철거리</td>
<td>-0.00006</td>
</tr>
<tr>
<td>전측면도제곱</td>
<td>0.0019</td>
<td>4.33**</td>
<td>주변학교수</td>
<td>0.002</td>
</tr>
<tr>
<td>주차대수</td>
<td>0.04</td>
<td>3.05**</td>
<td>도심거리</td>
<td>-0.00002</td>
</tr>
<tr>
<td>복도유형</td>
<td>0.13</td>
<td>5.50**</td>
<td>R^2</td>
<td>0.78</td>
</tr>
<tr>
<td>난방방식</td>
<td>0.15</td>
<td>3.55**</td>
<td>F값</td>
<td>36.08</td>
</tr>
<tr>
<td>마포구</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>평수</td>
<td>0.002</td>
<td>1.36</td>
<td>용적률</td>
<td>-0.0005</td>
</tr>
<tr>
<td>전측면도</td>
<td>-0.02</td>
<td>-3.84**</td>
<td>지하철거리</td>
<td>-0.0005</td>
</tr>
<tr>
<td>전측면도제곱</td>
<td>0.0002</td>
<td>1.10</td>
<td>주변학교수</td>
<td>0.019</td>
</tr>
<tr>
<td>주차대수</td>
<td>0.02</td>
<td>0.48</td>
<td>도심거리</td>
<td>-0.00005</td>
</tr>
<tr>
<td>복도유형</td>
<td>0.14</td>
<td>4.98**</td>
<td>R^2</td>
<td>0.66</td>
</tr>
<tr>
<td>난방방식</td>
<td>0.019</td>
<td>4.98**</td>
<td>F값</td>
<td>19.61</td>
</tr>
</tbody>
</table>
개발밀도의 자본적 가치를 평가하는 건축년도와 건축년도 제공변수의 경우 일부 구를 제외하고 대부분의 구에서 매우 유의미한 변수로 나타났다. 또한, 두 변수의 부호는 건축년도가 (−)를 나타낸데 비해 건축년도 제공변수는 (+)로 나타나 건축기간 경과에 따른 주거서비스의 하락효과와 함께 시간경과에 따른 재건축에 대한 개발이익에 대한 기대가 주택가격에 반영되어 있는 것으로 분석되었다. 구조적 특성변수인 복도유형이나 난방방식의 경우 주택가격에 미치는 영향력이 큰 것으로 나타났다.

강남지역의 경우 장복지역에 비해서 평균주택가격에 미치는 영향력의 크기가 장복지역의 비해서 더 큰 것으로 나타났는데 이것은 강남지역의 주택가격이 평균적으로

<table>
<thead>
<tr>
<th>표 9</th>
<th>강남지역 특성가격함수 추정결과</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>주택가격</td>
</tr>
<tr>
<td>강남구</td>
<td></td>
</tr>
<tr>
<td>평수</td>
<td>0.006</td>
</tr>
<tr>
<td>건축년도</td>
<td>-0.04</td>
</tr>
<tr>
<td>건축년도제곱</td>
<td>0.011</td>
</tr>
<tr>
<td>주차대수</td>
<td>0.023</td>
</tr>
<tr>
<td>복도유형</td>
<td>0.102</td>
</tr>
<tr>
<td>난방방식</td>
<td>-0.01</td>
</tr>
<tr>
<td>서초구</td>
<td></td>
</tr>
<tr>
<td>평수</td>
<td>0.005</td>
</tr>
<tr>
<td>건축년도</td>
<td>-0.057</td>
</tr>
<tr>
<td>건축년도제곱</td>
<td>0.002</td>
</tr>
<tr>
<td>주차대수</td>
<td>0.006</td>
</tr>
<tr>
<td>복도유형</td>
<td>0.086</td>
</tr>
<tr>
<td>난방방식</td>
<td>0.10</td>
</tr>
<tr>
<td>양천구</td>
<td></td>
</tr>
<tr>
<td>평수</td>
<td>0.011</td>
</tr>
<tr>
<td>건축년도</td>
<td>-0.01</td>
</tr>
<tr>
<td>건축년도제곱</td>
<td>0.00037</td>
</tr>
<tr>
<td>주차대수</td>
<td>-0.04</td>
</tr>
<tr>
<td>복도유형</td>
<td>0.067</td>
</tr>
<tr>
<td>난방방식</td>
<td>0.18</td>
</tr>
<tr>
<td>영등포구</td>
<td></td>
</tr>
<tr>
<td>평수</td>
<td>0.009</td>
</tr>
<tr>
<td>건축년도</td>
<td>-0.045</td>
</tr>
<tr>
<td>건축년도제곱</td>
<td>0.0017</td>
</tr>
<tr>
<td>주차대수</td>
<td>-0.023</td>
</tr>
<tr>
<td>복도유형</td>
<td>0.007</td>
</tr>
<tr>
<td>난방방식</td>
<td>0.07</td>
</tr>
</tbody>
</table>
강북지역에 비해서 더 높기 때문인 것으로 보인다. 또한 소형평수에 비해서 중·대평
평수의 경우 평수 증가에 따른 주택가격의 증가가 더 큰 폭으로 나타나기 때문일 것이
다. 북도유형이나 난방방식이 주택가격에 미치는 영향력의 정도는 강남지역이나 강북지
역간의 별다른 차이는 없는 것으로 보인다.

강남지역의 경우 용적률이 주택가격에 미치는 영향력의 차이를 보면 용적률 1% 증가
시 강남구는 0.2%, 서초구는 0.03%, 양천구는 0.1% 주택가격을 하락시키는 효과가 있는
것으로 나타났으며 영등포구의 경우에는 용적률이 주택가격에 의미있는 변수가 되지
못했다. 강남지역의 경우 용적률의 주택가격에 대한 영향력은 서초구가 다소 낮게 나타
났으며 강남구의 경우 0.2%로 가장 영향력이 큰 것으로 분석되었다.

입지특성 변수중 단지로부터 도심까지의 거리의 경우 대부분의 구에서 주택가격을
설명하는 유의미한 변수로 나타났으나 강남구의 경우에는 그 영향력이 없거나 서초구
의 경우 도심으로부터 멀어질수록 오히려 주택가격이 상승하는 것으로 나타났다. 이것
은 강남구의 경우 기존 도심의 기능을 일부 수행하고 있어서 그만큼 기존 도심에의 영
향력을 작게 받는 것으로 풀이된다. 대중교통수단의 접근성을 나타내는 지하철역까지의
거리의 경우 도심까지의 거리 변수와 비슷한 결과를 보이고 있다. 이것은 강남구와 서
초구의 경우 다른 지역에 비해서 대중교통수단에의 의존도가 낮은 때문으로 생각된
다.

아파트 단지의 용적률이 주택가격에 미치는 영향력을 평가하기 위해서 <표 8>과 <표
9>에서 나타난 특성가격합수 추정결과에서 용적률 변수의 추정계수값을 지역별로 비교
하면 다음과 같다. 용적률 변수의 경우 강북지역의 중랑구와 강남지역의 영등포구를 제
외하고는 유의수준 5%에서 주택가격을 설명하는 유의미한 변수로 나타났다. 또한, 개발
밀도가 주택가격에 주는 영향력의 크기는 중랑구와 영등포구는 영향력이 매우 낮은 그
скоп으로 분류되었으며 서대문구, 도봉구, 마포구, 서초구는 비슷한 수준을 보였으며 강남
구와 양천구에서의 개발밀도의 영향력이 가장 큰 것을 분석되었다. 특성가격합수에서
추정된 개발밀도의 영향력 변수와 특성가격합수에 포함된 8개구의 지역별 특성인 소득
수준과를 비교해서 나타내면 <그림 2>와 같다.
두 변수간의 상관분석 결과 상관계수가 0.56으로 소득수준과 주택가격에 내재된 개발밀도 차이간에는 비교적 상관 정도가 있는 것으로 나타났으며 통계적인 유의성은 7%로 분석되었다.

V. 결론

아파트단지의 개발밀도는 다른 주요 계획요소들과의 맥락하에서 전체적인 단지의 주거환경 수준을 결정하는 변수라 할 수 있다. 또한, 아파트단지의 개발밀도는 환경적인 성격을 가지고 있다고 평가된다. 본 연구에서 서울시 8개 구를 대상으로 개발밀도가 주택가격에 미치는 영향력을 분석한 결과 소득이 높은 지역일수록 가구가 지불하고자 하는 개발밀도에 대한 지불용의액이 큰 것으로 나타났다. 이것은 개발밀도가 가격에 미치는 영향이 지역적인 소득수준 차이에 따라 차별적이며 그런 차이는 소득수준이 높은 지역일수록 개발밀도의 영향력이 크게 나타날음을 알 수 있었다. 또한, 개발밀도 변수에는 장래 개발이익에 대한 기대수수의 가치도 내재되어 있음을 확인할 수 있었다. 본 연구는 대도시 주택시장에 대한 분석과 정책 수립시 대도시 주택시장의 지역적 특성을 감안할 필요성이 있음을 암시하고 있다.

본 논문에서는 개발밀도의 자본적 가치를 건축년도와 건축년도 제곱 변수로 통제하
있으나 용적률과 가격형성이 관계에 있어서 여전히 아파트 오소와 미래자본이득에 대한 요소가 완전히 분리되어 측정하는 데는 한계가 있었다. 동일 년도에 건축된 아파트단지의 경우에도 용적률이 상대적으로 낮은 단지에 기대되는 미래자본이득이 현재의 시장가격에 반영되어 있기 때문이다. 또한, 서울시의 경우 개발밀도 수준을 나타내는 용적률 변수에 대한 체계적인 정보가 축적되어 있지 못하다는 점 때문에 계수추정 결과에 대한 제약이 있다는 점이다.

참고문헌

1. 강부성의, 한국공동주택의 역사, 세진사, 2000.11.
2. 김기수, 물리적 환경의 질 지표에 의한 공동주택단지 인지주거환경의 질 향상에 관한 연구, 고려대학교 건축공학과 박사학위논문, 2000.6
3. 김정희, 윤정숙, 재개발아파트 단지의 주거환경평가, 연세대생활과학논집 14권, 2000
4. 김영환, 재건축·재개발 아파트단지의 주거환경 개선방안에 관한 연구, 서울대학교 박사학위논문, 1997
9. 박영준, 아파트단지에 있어서 옥외공간이 주거만족도에 미치는 영향에 관한 연구, 한양대학교 석사학위논문, 1997
10. 박인석, 물리적 환경의 질 지표에 의한 공동주택 단지 계획.방향 분석연구, 서울대학교 대학원 박사학위논문, 1992
13. 안태선·성장환, 주거환경분석을 통한 주택가격결정의 동태적 연구, 대한건축학회논문집 131, 1999.9, pp.53-62.
15. 이계용, "서울시 주택시장과 대기질 개선 편익에 관한 연구", 서울대학교 박사학위논문, 1996.
Abstract

In General, Floor Area Ratio (FAR) affects housing prices by two ways. FAR represents capital gain and determines overall living condition of apartment. This study focus on the value of development density on housing prices. Hedonic price function was constructed by each of 8 seoul autonomous districts. The results of hedonic price function is like this. First, value of development density on housing prices was different from each districts. Second, household of high income area (kangnam, yangcheon ku) are willing to pay more than those of relatively low income area (tobong ku, jungrang ku). This means housing policy of Seoul city need to be set up by its contexts of regional characteristics.